metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Jing-Gui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.034 wR factor = 0.088 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II)]- μ -3-carboxylatophenoxyacetato- $\kappa^2 O, O': \kappa^2 O'', O'''$]

In the title coordination polymer, $[Zn(C_9H_6O_5)(C_8H_{12}N_2)]_n$, the Zn^{II} atom is surrounded by two chelating 3-carboxylatophenoxyacetate (3-CPOA) dianions and one 1,10-phenanthroline (phen) ligand. Adjacent Zn^{II} atoms are bridged by 3-CPOA to form a zigzag chain structure. The polymeric chains are connected *via* π - π stacking interactions. Received 24 October 2005 Accepted 1 November 2005 Online 5 November 2005

Comment

3-Carboxyphenoxyacetic acid (3-CPOAH₂) can be regarded as an excellent bridging ligand with both rigid and flexible parts. We have recently reported the structures of three Zn^{II} complexes of 3-CPOA, with different aromatic ligands, namely benzimidazole, imidazole and 4,4'-bipyridine (Zhao *et al.*, 2005; Gao *et al.*, 2005; Zhang *et al.*, 2005). We report here the title Zn^{II} complex, (I), in which the aromatic ligand is phenanthroline.

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved ORTEPII plot (Johnson, 1976) of (I), with displacement ellipsoids drawn at the 30% probability level [symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$].

As illustrated in Fig. 1, the six-coordinated Zn^{II} atom is surrounded by two chelating 3-CPOA and one 1.10-phenanthroline (phen) ligand. The Zn-N and Zn-O bond distances (Table 1) are somewhat longer than the corresponding distances found for tetrahedrally coordinated Zn^{II} atoms (Gao et al., 2005; Zhang et al., 2005). The oxyacetate group is twisted out of the benzene plane, with a C18-O3-C20-C21 torsion angle of $-76.4(3)^{\circ}$.

Adjacent Zn^{II} atoms are linked by the 3-CPOA to form a one-dimensional zigzag chain, with a $Zn1 \cdot \cdot \cdot Zn1A$ distance of 8.230 (3) Å and a $Zn1 \cdots Zn1A \cdots Zn1B$ angle of 141.5 (3)° [symmetry codes: (A) -x + 3/2, y + 1/2, -z + 3/2; (B) x, y + 1, z] (Fig. 2). The centroid-to-centroid separation of 3.451 (2) Å between parallel benzene rings of neighboring phen ligands suggests $\pi - \pi$ stacking interaction. With the help of such interactions, the polymeric chains are assembled to form a two-dimensional supramolecular network (Fig. 3).

Experimental

Zinc diacetate dihydrate (0.88 g, 10 mmol) and phen (1.99 g, 10 mmol) were dissolved in a hot aqueous solution (20 ml) of 3-CPOAH₂ (1.96 g, 10 mmol). The pH value of the solution was adjusted to 7 with 0.1 M sodium hydroxide solution. Colorless crystals of (I) were obtained from the solution after several days. Analysis calculated for C₂₁H₁₄N₂O₅Zn: C 57.36, H 3.21, N 6.37%; found: C 57.32, H 3.22, N 6.39%.

 $D_x = 1.630 \text{ Mg m}^{-3}$

Cell parameters from 15325

Mo $K\alpha$ radiation

reflections

 $\theta = 3.0-27.5^{\circ}$ $\mu = 1.41~\mathrm{mm}^{-1}$

T = 295 (2) K

 $R_{\rm int}=0.030$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -20 \rightarrow 20$

 $l = -19 \rightarrow 19$

+ 0.3474P]

Prism, colorless

 $0.37 \times 0.24 \times 0.19 \text{ mm}$

4085 independent reflections

3241 reflections with $I > 2\sigma(I)$

where $P = (F_0^2 + 2F_c^2)/3$

Crystal data

 $[Zn(C_9H_6O_5)(C_8H_{12}N_2)]$ $M_r = 439.73$ Monoclinic, $P2_1/n$ a = 7.6164 (15) Åb = 15.542 (3) Å c = 15.186 (3) Å $\beta = 94.60 \ (3)^{\circ}$ V = 1791.8 (6) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.624, T_{\max} = 0.775$ 17147 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0468P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.088$ $(\Delta/\sigma)_{\rm max} = 0.001$ S = 1.034085 reflections $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}$ $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ 262 parameters H-atom parameters constrained

Table 1

Selected bond lengths (Å).

Zn1-O1	2.4622 (17)	Zn1-O5 ⁱ	2.298 (2)
Zn1-O2	2.0053 (16)	Zn1-N1	2.0962 (18)
$Zn1-O4^{i}$	2.0745 (19)	Zn1-N2	2.1093 (17)

Symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Figure 2

The zigzag chain structure of (I). The H atoms have been omitted. [Symmetry codes: (A) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (B) x, y + 1, z.]

Packing diagram of (I), viewed along the *a* axis. All H atoms have been omitted

H atoms were placed in calculated positions, with C-H = 0.93 or 0.97 Å, and refined in the riding-model approximation, with $U_{iso}(H) =$ $1.2U_{eq}(C).$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036), and Heilongjiang University for supporting this study.

References

Gao, S., Huo, L.-H., Liu, J.-W. & Gu, C.-S. (2005). Acta Cryst. E61, m494m495.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). *CrystalStructure*. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77291-5209, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

- Zhang, X.-F., Gao, S., Huo, L.-H. & Zhao, J.-G. (2005). Acta Cryst. E61, m2286-m2288.
- Zhao, J.-G., Gu, C.-S., Huo, L.-H., Liu, J.-W. & Gao, S. (2005). Acta Cryst. E61, m76–m78.